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Abstract Investigation on the mechanism and kinetics of
charge transfer at semiconductor/electrolyte interface is
significant for improving the photoelectric conversion
efficiency and developing novel and high-efficiency
photovoltaic devices. Scanning electrochemical micro-
scopy (SECM), as a powerful analytical technique, has a
potential advantage of high spatial and temporal resolu-
tion. It has been expanded into a broad range of research
fields since the first inception of SECM in 1989 by Bard
groups, which includes biological, enzymes, corrosion,
energy conversion and storage (such as solar cells,
hydrogen and battery). Herein, we review the basic
principles and the development of SECM, and chiefly
introduce the recent advances of SECM investigation in
photoelectrochemical (PEC) cells including solar cells and
PEC water splitting. These advances include rapid screen-
ing of photocatalysts/photoelectrodes, interfacial reaction
kinetics and quantitation of reaction intermediates, which
is significant for evaluating the performance, choosing
catalysts and developing novel composite photoanodes
and high efficiency devices. Finally, we briefly describe the
development trends of SECM in energy research.

Keywords scanning electrochemical microscopy
(SECM), solar cells, photoelectrochemical (PEC) water
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1 Introduction

Developing of a long-term, sustainable energy economy is
one of the most important technical issues facing humanity

[1]. Solar energy is abundant (90 PW), inexhaustible and
fairly well distributed over the planet [2]. Solar energy can
be converted into usable energy via photoelectrochemical
(PEC) cells which can be divided into two categories:
regenerative solar cells and photosynthetic cells (e.g.,
hydrogen) [3]. Regenerative solar cells (e.g., dye-sensi-
tized solar cells (DSSCs), perovskite solar cells (PSCs) and
organic solar cells) can convert solar energy to electricity.
Photosynthetic cells such as hydrogen can be obtained
through PEC water splitting approach, which has been
widely investigated since the first demonstration in 1972
by Fujishima and Honda [4]. For these devices, the
semiconductor/electrolyte interface (SEI) investigation
plays a vital role in improving charge carrier separation,
transport and recombination pathways. Up to date, some in
situ techniques have been developed to probe the dynamics
of SEI reactions on the surface of electrodes or solar cells
devices, such as photoelectrochemical impedance spectro-
scopy (PEIS) [5–7], intensity modulated photocurrent or
photo-voltage spectroscopy (IMPS/IMVS) [8], transient
absorption spectroscopy (TAS) [9,10], scanning-probe
measurement (SPM) [11] and synchrotron-based X-ray
techniques [12], and so on. Cen et al. reviewed the in situ
techniques for PEC water splitting and summarized the
advantages and limitations of these techniques [13].
Among them, SPM techniques, using a probe to scan the
surface of samples, can provide the information of the
interactions between the probe and the surface of samples,
although they exhibit limited temporal resolution [14].
Thus the SPM techniques such as atomic force microscopy
(AFM), scanning tunneling microscopy (STM) can be
utilized to characterize different surface properties of the
samples [15–18]. And the most popular SPM techniques
for in situ PEC studies are scanning photocurrent
microscopy (SPCM) [19] and scanning electrochemical
microscopy (SECM) [20]. Among them, SECM over-
comes many typical problems, for example the effects of
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the resistive potential drop in solution (iR drop), and
charging current. SECM is a “non-contact” scanning probe
technique, which can provide chemical and/or topographic
information about surfaces immersed in a solution. There-
fore, SECM cannot only analyze the local chemical and
PEC activity of sample surface, but also can be utilized to
investigate the surface reaction intermediates and its
kinetics as well as screen the active center. Hence,
analytical measurements can be performed in the inter-
facial region. Besides, the researchers have also integrated
SECM with alternating current (AC) impedance spectro-
scopy [21], atomic force microscopy (AFM) [22] and
scanning ion-conductance microscope (SICM) [23] to
investigate different properties.
In this review, we will describe the basic principle and

the development of SECM, and chiefly introduce the
recent advances in solar cells and PEC water splitting
based on the different operation modes of SECM.

2 Basic principles of scanning electroche-
mical microscopy (SECM)

2.1 Instrument constitutes

SECM is based on these changes of the faradaic current
when the SECM tip is moved across the surface of a
sample, which is useful in obtaining topographic and
surface reaction kinetic information. Figure 1 shows the
typical structure of SECM equipment which includes six
components (bipotentiostat, piezoelectric controller or
positioning system, probe, electrolytic cell, substrate and
computer). Among them, the bipotentiostat is used to
precisely measure and control the current and potential of
the probe and substrate (or the test samples). A high
resolution three-dimensional positioning system is con-

trolled by piezoelectric controller, which allows for
accurate movement of the probe and sample using x, y, z
stages. Another very important component is the probe or
SECM tip (e.g., ultra-microelectrode (UME)), which can
offer high mass transport rates, low ohmic effects, low
double layer charging [24,25]. UME is optimal for many
applications from kinetics measurements to electrochemi-
cal imaging. Furthermore, the electrolyte cell provides the
reaction site, where the substrate is placed.

2.2 Working modes of scanning electrochemical micro-
scopy (SECM)

SECM measurements can be performed using different
working modes. After the first report on SECM in 1989
which introduced feedback and generation/collection
(G/C) modes [26,27], a variety of new operation modes
have been developed in order to expand its application,
such as surface interrogation mode, ion transfer feedback
mode, potentiometric detection mode, constant current
mode, reverse imaging mode, redox competition mode and
direct mode, and so on [28]. Among them, the feedback
mode, G/C and surface interrogation (SI) modes are widely
used in the fields of PEC cells to study the imaging and
interfacial kinetics.

2.2.1 Feedback mode

SECM in feedback mode shows the great advantages in
detecting active sites of the surface. In general, the SECM
experiment is performed under four-electrode system, in
which SECM tip usually serves as one of the dual working
electrodes, and the substrate acts as the other one. These
electrodes are all immersed in the solution containing
redox mediators. The basic principle of the feedback mode
is shown in Fig. 2. When the positive potential is applied to
the SECM tip, the mediators will take place an oxidation
reaction as the following Eq. (1),

R – ne – ↕ ↓O: (1)

Here, R and O represent a reduced and oxidized species
in the solution, respectively. On the contrary, a reduction
reaction will occur when the negative potential is applied.
When the tip is far from the substrate, the steady-state
current (iT,1) can be given from Eq. (2),

iT,1 ¼ 4nDFcaβ; (2)

where n is the number of the electrons of electrode, F is the
Faraday constant (96485 A$s$mol–1), D is the diffusion
coefficient, c is the concentration of the reactant, a is the
radius of the UME tip, and b is a geometric co-efficient
[28]. When the tip is close to a conductive substrate or
electrochemical active species substrate, the oxidized
species formed in reaction (1) diffuse to the substrate and
can be reduced back to R (Fig. 2(a)). In this condition, the

Fig. 1 Simple schematic of a SECM instrument (WE: working
electrode, RE: reference electrode, CE: counter electrode)
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flux of R to the tip is increased, and iT> iT,1. This
phenomenon is termed “positive feedback” (Fig. 2(c)). On
the other hand, if the substrate surface is an insulator, the
electron cannot recycle in the redox reaction (iT< iT,1,
Fig. 2(b)), that is to say, “negative feedback” appears (Fig.
2(d)). If a steady-state is established, the normalized
current becomes independent of the ratio of diffusion
coefficients and depends only on the tip/substrate distance
(d). Moreover, larger iT is obtained when the d value is
smaller. And the approach curve can be presented in form
of iT/iT,1 vs. L (here L = d/a, and d is the distance between
the tip and the substrate), which provides information on
the kinetics of the process at the substrate.

2.2.2 Generation/collection (G/C) mode

The generation/collection mode includes the substrate
generation/tip collection (SG/TC) and tip generation/
substrate collection (TG/SC) mode. In these modes, both
SECM tip and substrate are working electrodes, and one
generates some species which can be collected by the other
[28]. In SG/TC mode, the electro-active species are
generated at substrate and collected by SECM tip
according to the following Eqs. (3) and (4),

R – ne – ↕ ↓O substrate reaction; (3)

O þ ne – ↕ ↓R tip reaction: (4)

However, the reaction occurs in TG/SC mode is counter
to SG/TC mode, as exhibited in Eqs. (5) and (6),

O þ ne – ↕ ↓R substrate reaction; (5)

R – ne – ↕ ↓O tip reaction: (6)

Typically, SG/TC mode is used for the measurements of
concentration profiles or chemical flux from a substrate.
And the TG/SC mode is predominantly used to study
reaction kinetics or perform modifications to the substrate.

2.2.3 Surface interrogation (SI) mode

The surface interrogation mode of scanning electrochemi-
cal microscopy (SI-SECM) is a new in situ electrochemical
technique based on SECM operating in a transient
feedback mode [29], which is developed by Bard and
coworkers [28] and can be used to analyze, detect and
quantify the adsorbed surface species on the electrode. The
SI-SECM mode consists of a specific application of the
feedback mode under transient conditions that allows for
the quantification of finite amounts of reacting species on
the surface of substrate. Different from the feedback mode,
the reactive species (A) are absorbed at the substrate
electrode in SI-SECM mode [28,30]. Figure 3 illustrates
the schematic of the mechanism of the surface interroga-
tion mode. First, the substrate is pulsed or scanned to a
potential where oxidation occurs and an adsorbed species
A is formed. At this time, the tip is kept at open circuit
(OC), and the solution only contains the initial mediators in
oxidized states (O) (Fig. 3(a)). Figure 3(b) shows the
substrate is taken to OC and the tip is pulsed and reduces O
to R. Then O can be regenerated via the diffused R reacting

Fig. 2 Basic principle of the feedback mode
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with adsorbed species A which is consumed and
transferred to final product P. Ideally, regeneration of O
should only be obtained through reaction with A.
Figure 3(c) exhibits the final state of the system, which
shows that all A is depleted and O reacts at the tip at the
rate governed by the hindered diffusion into the tip-
substrate gap. In summary, the SI mode acts as a transient
feedback mode, in which a SECM tip is used to generate a
titrant R which can react with A to regenerate O, producing
positive feedback. Finally, a negative feedback can be
detected as A is depleted from the surface.
Based on these different operation modes, many

excellent works have been carried out in various fields
such as solar cells, water splitting and battery as listed in
Table 1.

3 Application of scanning electrochemical
microscopy (SECM)

Since the first introduction in the 1990s, SECM has been
widely used to characterize hydrogen oxidation reaction
(HER), oxygen evolution reaction (OER), and CO2

reduction via electrochemical or PEC technologies [50–
52]. As the hot topic, application of SECM in solar cells
and PEC water splitting has attracted more attention for
researchers described as follows.

3.1 Nanostructured solar cells

With the development of PEC technology, more and more
new technology is applied to solve relevant scientific

Fig. 3 Schematic diagram of mechanism for the surface interrogation (SI) mode [31,32] (OC is denoted as open circuit)

Table 1 Application of SECM based on the above modes

applications measurement mode Refs.

dye-sensitized solar cells dye regeneration kinetics feedback mode [33–35]

dye-sensitized solar cells imaging feedback and SG/TC mode [36]

perovskite solar cells kinetics feedback mode [37]

oxygen reduction reaction detect hydrogen peroxide TG/SC mode [38]

hydrogen evolution reaction kinetics SG/TC mode [39]

formic acid oxidation electrocatalytic activity TG/SC mode [40]

oxygen reduction reaction mechanism SG/TC mode [41]

Li-ion batteries Li-ion intercalation SG/TC mode [42,43]

supercapacitor charge transfer kinetics feedback mode [44]

corrosion localized corrosion TG/SC mode [45]

photoelectrochemical kinetics SI-SECM mode [46]

photocatalysis screening TG/SC mode [31,47]

electroreduction of CO2 CO2 reduction SG/TC mode [32]

hydrogen evolution reaction kinetics feedback mode [48]

decomposition of formic acid quantification of adsorbed hydrogen SI-SECM mode [49]
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problem. Charge transfer process in solar cells is a field
worthy of extensive study topic, which includes the
regeneration process of the photosensitizers, photoelectric
catalyst, and the transfer behavior of photo-generated
electron and hole pairs at the interface of photoelectrode/
electrolyte. These processes are the necessary steps for
generating photocurrent, and paly an essential role in
improving the photoelectric conversion efficiency of
device. Due to the reaction occurring in the PEC interface
is a fast charge transfer process, some conventional
research methods cannot be able to monitor real time
information under working condition. Attributed to the
high time and spatial resolution, and sensitivity, SECM is
very suitable to detect the trace change of electrochemical
active material or chemical group located at the micro-
region, which has been proven to be an effective method
and plays unique role in studying the interfacial charge
transfer kinetics of solar cells.

3.1.1 Dye-sensitized solar cells (DSSCs)

SECM acting as an elegant tool was used to directly
determine the mobility of charge carriers and diffusion
constant within dye-sensitized nanostructured semicon-
ductors in 2006 [53]. Hence the PEC parameters including
conductivity under illumination or heterogeneous kinetics
could be obtained by means of SECM. In the field of
DSSCs, SECM has been used to investigate the dye
regeneration and charge transfer kinetics in the interface of
dye/electrode. For example, Wittstock group developed a
series of study on dye regeneration kinetics based on the
feedback mode of SECM, and distinguished the luminous
region using G/C mode, including D149 sensitized ZnO
and N719 sensitized TiO2 solar cells [54–56]. Similarly,
Martin group investigated the charge transfer kinetics
constants of N719 and N749 sensitized TiO2 solar cells
using SECM [35]. Shen group from Huazhong University
of Science and Technology has also developed much
valuable research since the first collaboration with Witt-
stock group [57], in which the charge transfer kinetics
between I– and Eosin Y+ dye adsorbed on ZnO was first
investigated and demonstrated the viability of SECM for
understanding DSSCs under working conditions. Later,
they extended SECM to investigate the dye-regeneration
process based on feedback mode [30,34,58], and dye
regeneration process with different mediator concentra-
tions and light intensities. First, they investigated the
reaction kinetics of n-type dye sensitized solar cells and
studied the influence of redox shuttles [Co(bpy)3]

3+/[Co
(bpy)3]

2+, I3
–/I– on the dye regeneration kinetics of

C106TBA and LD14. This work interpreted the essential
rule for the effects of PEC reaction kinetics on the n-type
photovoltaic device properties [48]. Furthermore, they also
investigated the reaction kinetics at the photo-cathode/
electrolyte interface of p-type devices. They studied the

influence of redox shuttles T2/T
–, I3

–/I– on the dye
regeneration kinetics of P1 [59]. Both these works
investigated the back transfer ability of the photo-
generated electrons at photo-anode/electrolyte interface
with different redox electrolyte, which was very helpful for
assessing the interfacial recombination behavior of the
photogenerated charges. Taking n-type TiO2 and p-type
CuCrO2 for an example, Fig. 4 showed the basic principle
of SECM and the reaction mechanism of different types
DSSCs under short-circuit condition. The photoanodes (for
example TiO2/C 106TBA and TiO2/LD 14) were placed in
the presence of the oxidized species of redox couple and
the photocathode (CuCrO2/P1) with reduced species of
redox couple. As shown in Fig. 4(a), under illumination,
dye generated hole/electron pairs after absorbed the
incident light. Then the holes (D+/TiO2) reacted with
redox species Co2+ regenerated dye (D/TiO2) accompanied
by the production of Co3+ which could be detected by the
UME. Finally, Co2+ species was regenerated by given
potentials relative to Co2+/Co3+. Therefore, the SECM
feedback approach curves can be obtained and fitted,
which could relate the tip current to the surface’s
heterogeneous electron or hole transfer kinetics and
eventually obtained the normalized apparent charge-
transfer constant (k). To determine the apparent standard
hetero-generous rate constant k0, the effective rate constant
(keff) values were plotted in Fig. 4(c) as a function of the
corresponding over-potential (h, where h = Esubstrate

–Eredox,solution
1/2). For p-type (CuCrO2/P1) DSSCs, the

mechanism was similar as illustrated in Fig. 4(b) and the
apparent standard hetero-generous rate constant k0 also
could be given from Fig. 4(c). It was observed that k0 for
fluorine-doped tin oxide (FTO)/TiO2 was slower in
electrolyte I3

–/I– than that of Co3+/Co2+, and the hole
transfer kinetics constant k0 for FTO/CuCrO2 in the case of
T2/T

– was slower than that of I3
–/I–. Further comparison

showed the recombination rate constant in p-type DSSCs
was much higher than n-type devices, and the interfacial
charge recombination kinetics constant were much smaller
than the dye-regeneration kinetic constants. This ensures
effective charge collection in the DSSC devices. These
works may offer some new complementing aspects to
establish methods for DSSCs.

3.1.2 Quantum dots sensitized solar cells

Except for DSSCs, inorganic semiconductor quantum dots
(QDs) have attracted more interest due to their unique
optoelectronic properties derived from the quantum
confinement effect. Many narrow band gap QDs (such as
CdS, PbS/CdS, CdSe/CdTe and CuInS2) are suitable for
sensitized solar cells (QDSSCs) because they can transfer
electrons to large band gap semiconductors in order to
further increase the charge separation and transfer
efficiencies. Compared to DSSCs, the efficiency of
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QDSSCs is still very low. Up to now, the main factor
restricting the improvement efficiency of QDSSCs is the
hole-transfer process namely the regeneration process of
QDs sensitizers which depends on the selection of redox
electrolytes. Therefore, the investigation of the QDs
regeneration process will be significant for improving the
efficiency of such devices. Some novel technologies (such
as nanosecond laser transient absorption spectroscopy
(TAS)) have been used to measure the rate of quantum dots
regeneration. In contrast to TAS, SECM is suitable to
monitor the fast electron/hole transfer process in devices in
working devices. So Shen group employed SECM to
scrutinize the influence of redox couples (T2/T

–, [Co
(bpy)3]

3+/[Co(bpy)3]
2+, I3

–/I–) on the quantum dots
regeneration rate (CdSe and CdS) [33]. The measurement
is also based on monitoring the feedback current, which is

related to the small change in the concertation of the redox
shuttle under the active area of UME probe caused by QDs
regeneration. The results revealed that the kinetics of QDs
regeneration depends on the nature of the QDs and the
redox shuttles presented in QDSSCs. This work offers
some new complementing aspects to establish the methods
for QDSSCs characterization.

3.1.3 Perovskite solar cells

As the new star in the field of photovoltaic, perovskite
solar cells, traced back to 2009 [60], has possessed a higher
efficiency up to ~23%. However, one of the main
restricting factors is the relative poor stability for the
environment and optical which are directly related to the
interface. To further increase the efficiency of PSCs, it is

Fig. 4 Basic arrangement for probing the heterogeneous reaction at the (a) n-type dye-sensitized semiconductor (TiO2) and (b) p-type
dye-sensitized semiconductor (CuCrO2) interface in the feedback mode of SECM under short-circuit conditions. The mediator couple is
Co3+/Co2+ and T2/T

–, respectively (Ref: reference electrode, Aux: auxiliary electrode, WE-1: working electrode 1, WE-1: working
electrode 2). Plot of ln(keff) vs. h for (a) FTO/TiO2 electrodes in acetonitrile corresponding to the reduction with I– and Co2+ and for
(b) FTO/CuCrO2 electrodes in acetonitrile corresponding to the oxidation with T2 and I3

– [59]. Copyright © 2014, John Wiley and Sons
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crucial to select of interface materials, increase the
interfacial charge separation and transportation efficiency
except for developing new materials and optimizing of
preparation technology. Based on the advantage of SECM,
Hsu et al. prepared a variety of PbI2/MAPbI3 perovskites
and determined how excess PbI2 affects its PEC properties
via a rapid screening technique using a modified SECM
[61]. Subsequently, Wang group investigated the regenera-
tion kinetics at perovskite/oxide interface with SECM [62].
However, the application of SECM in PSCs is only a few
and still needs to be explored might due to the instability of
PSCs in moist environment or solution.

3.2 Photoelectrochemical water splitting

To efficiently and sustainably split water via PEC
technology, several key criteria must be met simulta-
neously. For instance, (1) the light absorption, the
semiconductor should have an adequate band gap
(1.8 – 2.2 eV) so as to absorb a significant portion of the
solar spectrum especially the visible light [63,64], (2) the
appropriate band edge potentials which must straddle the
hydrogen and oxygen redox potentials, (3) efficient charge
transfer and separation process, (4) long-term stability in
the electrolyte solution and low cost and so on [65].
However, no single semiconductor satisfies all of the above
requirements for practical hydrogen production. Therefore,
various strategies have been developed in order to improve
the PEC activity, such as doping [66–68], constructing
hetero-junction [69–71], coupling with co-catalysts
[72,73], surface modification [74–77] as well as integrating
with solar cells to forming tandem cells [78–80]. Among
the factors affecting the PEC performance, the light
absorption depends on the band gap of semiconductor,
which is its intrinsic property. The application of SECM in

PEC water splitting mainly includes the SECM imaging,
kinetics investigation and quantitation of reaction inter-
mediates.

3.2.1 Screening of photocatalysts/photoelectrodes

As we all know, the solar to hydrogen efficiency (STH) of
the photoelectrodes is still too low to practical application.
Attributed to the varieties of photoelectrode materials, it is
still a challenge to rapidly screen photocatalysts in order to
economize the evaluation time and cost. Up to dates, many
in situ technologies have been introduced into PEC field as
described in Introduction section. Screening of catalysts
for PEC application by SECM has drawn wide attention of
many researchers.
Doping has been widely used to extend the light

absorption and improve the conductivity of photo-electro-
des. However, the essential relation between doping
element or content and PEC activity is not investigated
in detail. Previously, SECM was used to search for more
efficient doped Fe2O3 photocatalysts which doped with
different elements Sn, Ti, Be, Al [81]. For the screening of
single dopants, the array pattern was prepared as shown in
Figs. 5(a) and 5(b). Figure 5(c) shows a typical SECM
image obtained from a photocatalyst spot array under
visible light (l≥420 nm). The dark brown color (Red
dotted box in Fig. 5(c)) implied a largest photocurrent
which was obtained from 4% Sn-Fe2O3. Similarly,
Fig. 5(d) shows the SECM image obtained from photo-
catalyst spot arrays consisting of Fe, Sn, and Be under
visible light illumination. The highest photocurrent (130
nA) was observed at the composition of the 6% Be – 4%
Sn-Fe spot. The photocurrent then decreased gradually
with further increase of the amount of Be. Lately, Bard
group extended SECM to investigate PEC performance by

Fig. 5 Dispensed pattern of photocatalyst spot array with different mol % of Sn in Fe2O3 (a) and Be in 4% Sn-Fe2O3 (b). SECM image
of (c) Sn doping Fe2O3 and (d) Be doping Sn-Fe2O3 measured with spot arrays at 0.2 V vs. Ag/AgCl in 0.2 mol NaOH under visible light
irradiation (l≥420 nm) [81]. Copyright © 2009, American Chemical Society
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screening various dopants for BiVO4 [82]. The results
demonstrated the photocurrent of W or Mo doped BiVO4

was more than 10 times higher than undoped BiVO4.
Leonard et al. reported a rapid screening technique based

on the SG/TC mode of a modified SECM to study how
metal doping affects its PEC properties [83]. As shown in
Fig. 6(a), the colors represented the photocurrent for sulfite
oxidation at 0.2 V vs. Ag/AgCl in which browns
represented higher currents and greens represented lower
currents. From the SECM screening, we could see that a
maximum photocurrent occurred at a 9% atomic ratio of
Zn/W, which was consistent with the LSV results under
chopped light (Fig. 6(b)). The results demonstrated SECM
can act as a tool to choose the photoelectrodes with better
PEC performance.
Except for doping, coupling semiconductor (SC) with

electro-catalyst is also a common method to improve
photo-catalytic (PC) and PEC performance. However, we
cannot randomly couple SC with an excellent electro-
catalyst as co-catalyst to expect a higher PC or PEC
performance. Ye et al. developed some co-catalysts (IrOx,
Pt, Co3O4) dropped onto the W doped BiVO4 for PEC
water oxidation, which was quickly identified the effect of
co-catalysts onW doped BiVO4 by the optical fiber-SECM
technique [84]. Fig. 7 shows the principle of SECM and
the corresponding image results of the electrocatalyst Ir/Co
oxides Co3O4 and Pt. The optical fiber-modified SECM
technique was used to quickly identify the effect of various
electrocatalysts for PEC water oxidation. The experimental
results demonstrated Pt and Co3O4 were effective on
BiVW-O films, while IrOx was not active, even though
IrOx films showed the highest electrocatalytic activity for
water oxidation as electrocatalyst. This work inspired us
that the SECM method can be used to optimize electro-

catalysts rapidly, e.g., by investigating different composi-
tions with mixed electro-catalysts and by changing their
thickness by dispensing blank solutions or with changing
concentration of precursor solutions. Subsequently, Bard
group also recently reported a new combinatorial metho-
dology using a modified SECM technique for rapid
preparation and screening of semiconductor photo-cata-
lysts [85], which is analogous to the SECM for screening
of other electro-catalysts.
Overall, SECM technique is extremely useful in

mapping of photoelectrode surface, which can provide
valuable spatially resolved information on the process
kinetics occurring at the SEI of a PEC system. However,
the resolution achieved by this technique is limited by the
dimension of the UME. New developments in electrode
design will be able to improve the special resolution of this
technique.

3.2.2 Investigation on the kinetics of charge transfer at
semiconductor (SC)/electrolyte interface (SEI) with scanning
electrochemical microscopy (SECM)

Fast charge transfer kinetics at the photoelectrode/electro-
lyte interface is critical for highly efficient PEC water
splitting. SECM is a powerful approach for measuring the
kinetics of heterogeneous electron transfer, which can be
determined with high lateral resolution while scanning a
tip parallel to the surface. Lu group described the electron
transfer kinetics at interfaces using SECM in details [86].
Bard group performed surface-selective and time-depen-
dent redox titrations to directly measure the surface OER
kinetics of NiIV and FeIV in NiOOH, FeOOH, and
Ni1 – xFexOOH (0< x< 0.27), which were popular co-
catalyst used in PEC water system [87]. The results

Fig. 6 (a) SECM images for the typical photocurrent response of Zn/WO3 composites under full UV irradiation and with a 420 nm long-
pass filter. (b) PEC response of electrodes with chopped light under full UV irradiation at 20 mV/s [83]. Copyright © 2013, American
Chemical Society
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concluded that the remarkable OER activity of Ni1 – xFex
OOH arising from the fast OER kinetics on Fe sites in
NiOOH with a rate constant of 1.7 s–1. Currently, we
studied the interfacial charge transfer kinetics in PEC

system by SECM based on its feedback mode as show in
Fig. 8(a) [88]. For investigating the catalytic reaction
kinetics (reaction 1 in Fig. 8(b)) of BiVO4 at the electrode/
electrolyte interface, an extra Pt wire was ultrasonically

Fig. 7 (a) Operation principle of SECM and the corresponding image results of the electrocatalyst (b) Ir/Co oxide array, (c) photocurrent
at Co3O4 spot, and (d) photocurrent at Pt spot [84]. Copyright © 2011, American Chemical Society

Fig. 8 (a) Basic principles for investigating of interfacial reaction kinetics in PEC water splitting under the feedback mode of SECM
(Ref: reference electrode, Aux: auxiliary electrode, WE-1: working electrode 1, WE-1: working electrode 2). The semiconductor
photocatalyst is BiVO4 and the redox probe is [Fe(CN)6]3

–/[Fe(CN)6]4
– (named Fe3+/Fe2+). (b) Energy scheme of BiVO4 system on

electrochemical and vacuum scale at pH 7.0. Reaction 1 is the catalytic reaction, and reaction 2 is back reaction at interface [88]. Copyright
© 2016, American Chemical Society
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welded on the substrate electrode FTO with ohmic contact
(i.e., FTO/BiVO4 was named as photoanode) as indicated
as connection style 1 in Fig. 8(a). Thus, the PEC cell was
operated in short-circuit condition. SECM revealed the
surface reaction kinetics constant of BiVO4 was 9.30 ´107

mol–1$cm3$s–1. And the ratio of rate constant for hole to
electron for Mo:BiVO4 is ~30 times larger than that of
BiVO4. The results reveal that the Mo element can
significantly improve the transfer property of the photo-
generated holes and suppress the transfer of photo-
generated electrons at the photo-anode/electrolyte interface
when doped into BiVO4. This study will provide new ideas
for designing and choosing the materials with high
performance, and allows us to make a comprehensive
analysis of interfacial charge transfer kinetics in PEC
system. Subsequently, SECM has also been used for
recording the photo-induced charge transfer reactions at
BiVO4 at chemically polarized liquid/liquid (L/L) inter-
faces [89].

3.2.3 Quantitation of reaction intermediates

Considering the complex process of water oxidation,
quantitative of the reaction intermediates (such as H2O2,
OH⋅) is very important which is useful for understanding
the mechanism. Previously, Ahn and Bard investigated the
surface cobalt sites and the intermediates of the electro-
catalyst CoPi by surface interrogation scanning electro-
chemical microscopy (SI-SECM), in which CoPi was a
universal co-catalyst for PEC water splitting [90].
Currently, SI-SECM was widely used to detect and
quantify the intermediates of photoelectorde during PEC
water splitting. For instance, Zigah et al. quantified
adsorbed hydroxyl radical OH(ads) generated photoelec-
trochemically at the surface of a nanostructured TiO2

substrate electrode [91]. In this study, the geometry of the

simulation space was depicted in Fig. 9(a) and it was
adjusted for the experimental conditions, where a tip radius
a = 50 m and RG = 3, and the substrate was modeled as an
active subdomain of radius b = 150 m and depth d′ = 10 m.
The interelectrode distance d was adjusted to 27 m.
Fig. 9(b) described the mode of operation of SI-SECM for
the generation and the detection of OH(ads) on the TiO2

substrate. Finally, the typical ⋅OH(ads) saturation cover-
age of 338 mC$cm–2 was found in nanostructured samples.
The decay kinetics of ⋅OH(ads) by dimerization to
produce H2O2 were studied through the time dependence
of the SI-SECM signal and the surface dimerization rate
constant was found to be ~ kOH = 2.2 ´103 mol–1$m2$s–1.
Subsequently, this group investigated the reaction kinetics
and surface coverage of water oxidation intermediates
(H2O2) at the W/Mo-BiVO4 photoanode using SI-SECM
[92]. Besides, Cho et al. studied the PEC water oxidation
of doping BiVO4 and detected the oxygen evolution with
using optical fiber incorporating a ring electrode via SECM
[93].
As a promising narrow semiconductor, the PEC

performance of Fe2O3 was mainly limited by slow water
oxidation and severe recombination in the surface states.
Therefore, in order to better understand the pathway of
PEC reaction and further improve the PEC performance, it
is essential to quantitative analyze of the reaction
intermediates of the surface states. Krumov et al. used
SI-SECM mode to quantitatively in situ probe the
reactivity and coverage of reactive surface states in
Fe2O3 during PEC water oxidation [94]. Besides, they
also detected the evolution of H2O2 (1.0 mmol$m–2) during
the decay process based on the SG/TC mode of SECM,
which provided strong evidence for the existence of the
⋅OH(ads) intermediate on Fe2O3 and clearly showed a
mechanism for the generation of unwanted products in
PEC cells. This study demonstrated how SI-SECM
enabled direct observation of multiple adsorbates and

Fig. 9 (a) Description of the general SI-SECM simulation space and conditions. All geometries are in axial 2D and described by z and r
were shown. Boundary types: i, insulation; ii, bulk concentration (semi-infinite); iii, flux at the tip; iv, concentration of hydroxyl radical
OH at the substrate; v, insulation. (b) Description of the surface interrogation technique for the reduction of ⋅OH(ads) on TiO2.①No ⋅OH
(ads) on TiO2;②⋅OH(ads) are generated on TiO2 through surface irradiation.③ Light is turned off, interrogation of ⋅OH(ads) takes place
by reduced species generated at the tip [91]. Copyright © 2012, Royal Society of Chemistry
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reaction pathways on operating photoelectrodes. Bard
group also quantified the density of photoactive sites (Fe4+

species) on the surface of Fe2O3 based on the SI-SECM
[95]. In addition, the PEC water oxidation reaction
dynamic was elucidated by time-dependent redox titration
experiment which was similar to Krumov et al. [94].

4 Conclusions

In summary, we elaborated and summarized the basic
principle and application of SECM in PEC fields in recent
years. Particularly, discussion is focused on the screening,
kinetics and quantitation of reaction intermediates in solar
cells and PEC water splitting based on the different modes
of SECM. Attributed to its better sensitivity, spatial
resolution and more accurate control of the position of
the probe, the application of SECM is continuously
expanded to various areas up to now. However, it still
has some disadvantages such as its spatial resolution is not
high enough. So SECM has more and more commonly
combined with other instruments, such as AFM and SICM,
surface plasma resonance, and so on. And thus it will
continue to broaden the scope of the study, and will
become a more important electrochemical technique in the
future.
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